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During last decade, metal halide perovskites (MHPs) have
become research hotspot  due to their  superior  optoelectron-
ic  properties[1−15].  MHP  single  crystal  was  first  reported  in
1978[16]. Up to now, MHP single crystals with various composi-
tions  have  been  synthesized  and  characterized.  Compared
with  perovskite  polycrystalline  films,  perovskite  single  crys-
tals show lower defect density,  higher carrier mobility,  longer
carrier diffusion length. Here, we summarize the growth meth-
ods  of  perovskite  single  crystals,  and  discuss  their  optoelec-
tronic applications, including perovskite solar cells (PSCs), pho-
todetectors (PDs) and light-emitting diodes (LEDs).

A  variety  of  crystallization  methods  have  been  de-
veloped  for  preparing  high-quality  perovskite  single
crystals[17−21],  including  inverse  temperature  crystallization
(ITC)  method[19],  solution  temperature-lowering  (STL)  meth-
od[20, 21] and  antisolvent  vapor-assisted  crystallization  (AVC)
method[22, 23].  ITC method was first proposed by Bakr et al.  to
grow MAPbX3 (X = Br–,  I–)  single crystals  in 2015[19] (Fig.  1(a)).
This method is applied to precursors with inverse solubility in
certain organic solvents (i.e., the solubility decreases as temper-
ature  increases).  Perovskite  molecules  in  complex  can  be  re-
leased  by  raising  the  temperature,  initiating  supersaturation
and crystallization. For MAPbI3, MAPbBr3 and MAPbCl3, the ap-
plicable solvents for ITC method are GBL, DMF and DMSO, re-
spectively.  This  method  is  commonly  used  because  it  is  very
simple  and  quick.  For  STL  method,  the  supersaturation  is
achieved by lowering the temperature of a hot saturated solu-
tion[20] (Fig.  1(b)).  The solvents have increasing solubility with
temperature,  e.g.,  HI-based  solution.  High-quality  single  crys-
tals can be obtained by precisely controlling the rate of lower-
ing  temperature[21]

. However,  STL  method  is  quite  time-con-
suming. Bakr et al. reported AVC method to grow sizable MA-
PbX3 (X  =  I  or  Br)  single  crystals  with  volumes  exceeding
100  mm3[22].  The  perovskite  solution  was  sealed  in  an  anti-
solvent-containing  container,  and  the  diffusion  of  anti-
solvents induces slow and uniform crystallization without chan-
ging the temperature (Fig. 1(c)). Ding et al. utilized this meth-
od  to  grow  lead-free  perovskite  materials  (NH4)3Sb2IxBr9–x in
ethanol solvent[23].

For photovoltaic application, the absence of grain bound-

ary  in  single  crystals  lowers  the  defect  density  and  increases
carrier  diffusion  length,  theoretically  enabling  better  device
performance.  While  in  practice,  it  is  challenging  to  obtain
single-crystal  devices  with  controllable  thickness,  negligible
surface defects and well-deposited functional layers, which ex-
plains  their  underperformance  compared  with  polycrystal-
line  counterparts.  Efforts  have  been  made  to  thickness  con-
trol,  defect  engineering  and  interface  management,  pushing
the power conversion efficiency (PCE) to over 20%. Bakr et al.
used  space-limited  ITC  method  to  grow  size-controllable
MAPbI3 single  crystal[24].  A  PTAA-coated  substrate  was  used
to  cover  another  PTAA-coated  substrate  spread  with  per-
ovskite  precursor  on  the  surface,  and  the  complex  was  then
heated slowly. The growth of crystal film was confined by hy-
drophobic  substrates,  and  micrometers-thick  single-crystal
film  was  obtained.  With  careful  separation  of  two  substrates
with  a  blade,  good  contact  between  crystal  film  and  trans-
port  layer  could  be  ensured,  yielding  a  PCE  of  21.09%  with  a
high fill  factor  of  84.3%.  To  reduce surface  defects  caused by
MAI escape at high temperature, Bakr et al. lowered the crystal-
lization temperature by using mixed solvent, propylene carbon-
ate (PC) and GBL[25] (Fig. 2(a)). The addition of PC can let crys-
tallization to occur at <90 °C. The film exhibited a smooth sur-
face  with  a  uniform  thickness  of  ~20 μm  (Fig.  2(b)).  The  PCE
was  increased  to  21.9%.  To  further  broaden  near-infrared
(NIR)  response,  mixed-cation  FA0.6MA0.4PbI3 single-crystal
films  were  made[26].  The  external  quantum  efficiency  (EQE)
spectra  showed  edge  redshifted,  increasing  short-circuit  cur-
rent  density  to  over  26  mA/cm2 while  maintaining  the  open-
circuit voltage. A PCE of 22.8% was achieved.

Perovskite single crystals have been used in PDs. In 2015,
Sun et  al.  first  utilized  perovskite  single  crystal  to  make  PDs
(Fig.  2(c)),  revealing  better  performance  and  durability  than
its  polycrystalline  counterpart[27].  Under  1  mW/cm2 light  illu-
mination,  MAPbI3 single-crystal  PD  showed  100  times  higher
responsivity  and  EQE.  To  further  increase  the  detectivity  and
lower  the  noise,  Huang et  al.  made  detectors  with  thin  per-
ovskite  single  crystals,  obtaining  low  dark  current,  low  noise
and  high  detectivity[28].  MAPbBr3 PDs  offered  a  record  linear
dynamic  range  of  256  dB,  which  can  be  attributed  to  re-
duced  carrier  recombination.  In  2016,  Huang et  al.  first  ex-
plored  the  application  of  MAPbBr3 single  crystal  in  X-ray  de-
tector,  achieving  a  high  mobility-lifetime  product  of  1.2  ×
10–2 cm2/V[29].  Lead-free  perovskite  single  crystals  were  also
used  in  X-ray  detectors.  Tang et  al.  used  double  perovskite
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Fig.  1.  (Color  online)  Common  solution  growth  methods  for  perovskite  single  crystals.  (a)  Inverse  temperature  crystallization  method.  Repro-
duced with permission[19], Copyright 2015, Springer Nature. (b) Solution temperature-lowering method. Reproduced with permission[20], Copy-
right 2015, Science (AAAS). (c) Antisolvent vapor-assisted crystallization. Reproduced with permission[22], Copyright 2015, Science (AAAS).
 

Fig. 2. (Color online) (a) MAI escape from MAPbI3 films in high-temperature and low-temperature crystallization. (b) Cross-sectional SEM images
and device structure for MAPbI3 single-crystal PSC. Reproduced with permission[25], Copyright 2020, American Chemical Society. (c) The planar-
type photodetector fabricated on (100) facet of a MAPbI3 single crystal. Reproduced with permission[27], Copyright 2015, Springer Nature. (d) The
X-ray image for a key by Cs3Bi2I9 single-crystal detector (1 × 1 mm2). Reproduced with permission[32], Copyright 2020, Springer Nature. (e) Emis-
sion intensity vs time plot for an LED operated at 1 mA current. Inset: SEM image for MAPbBr3 micro-platelet and the image of LED at t = 12 h. Re-
produced with permission[33], Copyright 2017, American Chemical Society. (f) Normalized PL spectra for (BA)2Csn−1PbnBr3n+1 single crystals. Repro-
duced with permission[35], Copyright 2020, Science (AAAS).
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Cs2AgBiBr6 single crystal to make X-ray detectors with a minim-
um detectable dose rate of  59.7 nGyair/s[30].  Yang et al.  repor-
ted anisotropic X-ray detectors based on (NH4)3Bi2I9 single crys-
tals  with  a  detection  limit  as  low  as  55  nGyair/s[31].  Liu et  al.
used  refinement  solution  to  get  rid  of  extraneous  nuclei  and
grew  large  Cs3Bi2I9 single  crystals[32].  The  X-ray  detectors
showed high sensitivity, low dark current and high thermal sta-
bility at 100 °C, being suitable for X-ray imaging (Fig. 2(d)).

Moreover, perovskite single crystal can be a good electro-
luminescent  material.  Yu et  al.  first  reported  LEDs  based  on
MAPbBr3 single-crystal  micro-platelets  with  a  simple  struc-
ture ITO/PVK/Au[33].  The device emitted green light with a lu-
minance of ~5000 cd/m2,  lasting for at least 54 h without de-
gradation  (Fig.  2(e)).  Then,  the  electroluminescence  blinking
behavior  of  MAPbBr3 single  crystal  was  observed.  The  device
with  a  structure  ITO/MAPbBr3/ITO  exhibited  a  low  operation
voltage  of  2  V  and  a  pure  green  emission  with  full  width  at
half  maximum  of  ~20  nm[34].  Nevertheless,  the  luminescence
went  through  blinking  at  the  crystal  edges.  The  radiative  re-
combination  mainly  occurred  at  crystal  edges  due  to  spatial
confinement  effect,  but  large  number  of  traps  and  defects
also exist at the edges, providing non-radiative paths. The ex-
citons  either  emitted  light  or  were  quenched  by  the  traps  at
the  edges,  leading  to  blinking.  Yang et  al.  prepared  a  series
of  2D  Ruddlesden-Popper  perovskite  single  crystals  with  the
formula  of  (BA)2Csn−1PbnBr3n+1

[35].  Blue  LEDs  with  high  color
purity  were  made via a  micromechanical  exfoliation  method.
The  emission  can  be  tuned  across  blue  light  range  by  vary-
ing n (Fig. 2 (f)).

Single  crystals  of  perovskites  present  application  poten-
tial in solar cells, photodetectors and LEDs by virtue of superi-
or  optoelectronic  properties.  Various  growth  methods  have
been developed to obtain large single crystals with high qual-
ity.  More efforts  will  focus on size control,  interface modifica-
tion and long-term stability.
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